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The completeness of homogeneous (elementary) solutions in the space of solu- 
tions of equations of the elasticity theory with finite energy is proved. The 
scheme for this proof includes the case of plates inhomogeneous through the 

thickness and is similar to the scheme given in [l]. One of the general represen- 

tations of the solution of the elasticity theory equations which are inhomogene- 
01.1s in the thickness, on whose basis the system of elementary solutions is deter- 

mined,is presented without proof. This system has been obtained in [2, 33 by 
another method. 

The problem of the completeness of homogeneous solutions was formulated in 
different aspects [5] by Lur’e [4] in connection with the foundation of one of the 

versions of the asymptotic method [S, ‘71. The connection of this problem with 

the problem of n-tuple completeness of Keldysh [8] is given and one of the me- 
thods to solve it is proposed, which is realized in [9, 10-J for the case of the plane 
and axisymmetric problems. 

1, Let Q = s X I- h, hl be the domain occupied by a plate, where 2h is the 
plate thickness, S is its middle surface, aS is the bcundary of S, Sk are the plate 

endfaces corresponding to z3 = f h, r = aS X [- h, h] is the lateral surface. 
The properties of the plate material are given by the Lame’ elastic characteristics 

h = A (531, p = P (z3). 

The elastic equilibrium of a plate described by the equations 

is considered. 
A system of elementary solutions satisfying the following homogeneous conditions on 

the plate endfaces is presented in 12, 3] 

=i3 I,, -0 (i=1,2,3) (1.2) 

For the later discussion, it is convenient to determine the homogeneous solutions con- 

structed in [Z, 33 by using the general representation of the solution of (1.1) and (1.2), 
whose form we present without proof. 

Namely,every solution of the elasticity theory equations (1.1) which satisfies the 
boundary conditions (1.2) can be represented as 

uf = Ul(‘) (ED, cb,) + Ui(~) (C) + Lli(‘) (g) (1.3) 
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Fu~~~m~re~ the function c {PT, x3) satisfies the following equation and boundary can- 
ditions 

and, fir&y, we have for the function g (x, xs) 

L, ( A\)g = (A + Tk (2, 2s) = 0 (I* 8) 
TI = (-- p-1 (fq, I’ fzt h) = 0) (3. s3) 

We consider the functions c f.z> x3) and g (x, ss> below as functions c: (z), g (x) 
with values in some Hilbert space X, and the operators P, V as unbounded self-adjoint 
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operators in this space. 

Following [6, 71, we designate H(l), H@), a@) , respectively, as the biharmonic, poten- 

tial, and vortex solutions. Let us emphasize that each satisfies Eqs.(l. 1) and the bound- 
ary conditions (1.2). If h, p = const, then (1. ‘7) is converted into a biharmonicequa- 

tion,(l. 8) into a harmonic equation, and (1.4) into the Lur’e [4] formulas. 

2, Let us introduce the concept of elementary solutions for (1.7) and (1.8), respect- 
ively. 

We call a solution of (1.7) of the form p 1 

ck = 2 mks @) ‘Pks 
s-0 

(2.1) 

an elementary solution of the first hind. In (2.1) fik is the eigenvalue, (ok,, is a gene- 

ralized eigenvector (see [11] ) of the operator bundle 

L (f3) cp = @“I - 2@F + v) cp = 0 (2.2) 

and qks are associated vectors determined from the equations 

The functions mks (z) satisfy the equations 

(A - PA) mkO = 0 

(A - /3,Jmks = m,,_, 6 = 1,. . . . P- 1) 

We shall omit the second subscript in the case where there are no associated vectors. 

We note that the spectral problem (2.2) has been studied in detail in [l], where in 

particular, the double completeness of the system of eigen- and associated vectors is 

established by using the results in [ll]. 

We now define an elementary potential solution as a vector function of the form 

U,(s) = U@) (CJ 

We call every solution of Eq. (1.8) of the form 

an elementary solution of the second hind, where yt is an eigenvalue, It is an eigen- 
vector of the operator T defined by (1.9). Evidently T is a positive operator, and 
therefore all J+ > 0. From the general theory of self-adjoint operators [12], there fol- 

lows that the system of eigenvectors {Zt} forms an orthonormalized basis of the space 

Xv, i.e. h . 
(4, l.)+ = s’ fLlt4 axa = b* 

-h 

We define the elementary vortex solution as a vector-function of the form 

U&a) = U(a) (gt) (2.3) 

It can be seen by direct substitution that y. = 0 is an eigenvalue of the operator T. 
Its corresponding elementary vortex solution is a particular case of the biharmonic solu- 
tion. Hence, we understand the vortex solution below to be a set of elementary solutions 
of the form (2.3) which correspond to points of the spectrum yt > 0 (t = 1, 2, . . .). 
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3. The following functional spaces will be used below: 
1. X is the space of functions, square integrable in the segment ts E I-- h, hl 

and with weight p (x3); 
2. X” is the scale of the Hilbert spaces [13] which is obtained by closure of the 

intersection of the domains of definition D (V”1 of the operators V” (n = 1, 2, . ..) 

in the metric 

3. Ls (&S’, X”) is the space of functions with values in X0 and the norm 

IPI!& = ~Su~l&.~ 

4. w(p) (a~!?, X) is the space of functions with values in X whose generalized 

derivatives up to order fi belong to L, (dS, X), ([I-/[p,,, is the notation for the norm 

in VP) (as, X)); 
5. Wp,a (as) is the Hilbert space with norm 

RfL = UflL + IlrlL 

Note. In the case where 8s is a smooth closed curve of length t, the norm in 
the space w=,p (a$) can be defined by the following method: 

(3.1) 

fn = 4 fZn dso, e, = (24~“‘exp (ins& 

as 
6. H is the space of vector functions w (wl, ws, wS) having a finite energy in- 

tegral 

11 w @f = j 1 Rj (lv) Eij (W) &J d3+ (3.2) 

7. HO is the space obtained by closure of the set of vector functions V, each of 

whose components Vi ES C, (S, X) in the metric (3.2); 
8. c, (s, x) is the set of functions with values in X which are finite and in- 

finitely differentiable in S. 
The elements of the space H, possess the following obvious properties: 

vIr=O (3.3) 

Let us define the space of generalized solutions of the problem (1.1) and (1.2). 

Definition. We call the set of elements u E H satisfying the condition 

(u, V)H = 0, VEH, (3.4) 

the space of generalized solutions HI. 
In other words, H, is the orthogonal complement to H, in the metric (3. Z> or H = 

No @ HI. 
If (3.4) is integrated by parts and the property (3.3) is taken into account, we see that 

u satisfies the relationships (1.1) and (1.2). 

4, We turn to a study of the question of the completeness of the system of homo- 
geneous solutions in the space HI. 

First of all we note that on the basis of the triangle inequality we have from the 
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general representation of the solution (1.3) 

~“jH<IIu(l)(aO~ ~l)~~H+IIu"(~)~~+~ug)(g)~ = (4.1) 

~UVQlr ~dllH+n4lZI+agllz* 
Here 2, and Z, are spaces induced by the energy metric for the functions c and g 
and the norms 

11~ 6, = +\ i {p(z3)W"12 + lA2c12 - W3P"A2c + (4.2) 

S-h 

3 (23) [I WC la + I a&' la1 + 2~ (G) [I &a& I2 - a~2~a,2~l} ax daj 
b = p(z3)cn- q(x3)Ac 

P b3) rl a12g,12+ l a22g, l2+l u,f l2+ l a,g*f 121 h do, (4.3) 

h 

g*=g_--l- 
$0) c v (Sk&3 

-lh 

The problem will evidently be solved if it is proved that for any e > 0 and for any 

solutions of Eq.(l. 7) C (S 2, and for (1.8) g IZ 2, , there exist such K and N, that 

(4.4) 

The proof of the first of the inequalities (4.4) is based on the use of some a p r i or i 

estimate which we present without proof because of insufficient space. 

Let us consider the boundary value problem 

L (a) c (z) = o, c jes = fp Ww = fs (4.5) 

Lemma 1. To solve the boundary value problem (4.5) there holds the following 

a priori estimate 
u~l~l~~~IIfll~/~.‘/.+Of2l~,.~,.l (4.6) 

We introduce the space of the pairs YaY = X" $ Xy, whose elements will be de- 
noted by 8 = {e,,e,}. 

We also introduce the space 

nlbsy = wa,= (as) @ ws,y (as) 

The elements of this space are pairs of functions E = {f,, f2} defined on r. We 
define the scalar product in this space as follows: 

(E”‘, ~@~))paa, = up’, f?$, a -I- (f(2), ff’)s, y (4.7) 

where the scalar products on the right are defined by the relationship (3.1). 

Let 8 k be some complete system in the space Yap, and e, an orthonormalized basis 
in L, (as). The following assertion is evident. 

Lemma 2. The system Enk = e, @ ek is complete in the space IIway. 
Now, let us admit that the solution of (1.7) is c E 2, and I? (c) = {c [as 1 fi, 

AC Ias = f2} is its trace on the side surface I?. On the basis of the inequality (4.6) 
we have 

(4.8) 
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We set 0 k” = (VA (Pkr ~k~"(Pkft wherevk are the eigenvectors of a quadratic 
bundle (2.2) (here we assume for simplicity that there are no associated vectors). AS fol- 

lows from Ill, the system {Oko} is complete in the space Yoo, therefore, the system 

@k = {vk, pk rp~} is complete in the space y’8vy/a. There results from Lemma 2 that 

for any E > 0 there exist N, K and constants C,, such that 

jIE--_ENlcli~s~<~, ENk = 5 i (k~(%@@k) (4.9) 
n==--N k=l 

Let us introduce the notation 

CEk (s) = i cafe 
n==---N 

We examine the following system of boundary value problems ln the domain S : 

Amk - r6kmk = 0, mk 10s = & (s) (k=~,Z,...,X) (4.10) 

It has been shown in [3] that there are no negative reals among fik whereupon all the 
boundary value problems (4.10) are solvable uniquely. 

Let us consider the expression 

c, = c - Cl, cl= ~n$$(z)~k= ick 
k=l k==l 

Evidently co is the solution of (1.7) and 

l’ (c& = I? (c) - .I? (cl) = E - ENK 

The first of the inequalities (4.4) now results from the inequalities (4.8) and (4.9). 

Therefore the following theorem is proved. 
T he o r e m 1. Every solution of (1.7) can be approximated by elementary solutions 

of the first kind in the metric (4.2). 
N 0 t e , If the system {8k} is the basis in the space Yay, the inequality (4.4) can be 

understood in the sense of convergence, i.e. the elementary solutions of the first kind 

possess basis properties, 
Because the system of eigenmnctions {It} comprises an orthonormalized basis of the 

space Xtt., it is considerably simpler to prove the following theorem. 
Theorem 2. Every solution of (1.8) belonging to the space Z s can be represented 

as a series in elementary solu~o~ of the second kind, which converges in the metric of 

this space. 
The following fundamental theorem results from Theorems 1 and 2 and from the in- 

equality (4.1). 
Theorem 3. The system of homogeneous solutions is complete in the space fir. 

6, Let us consider the problem of plate deformation under the effect of forces t = 

{ti, t,, ts} applied to the side surface I?. The following boundary condition is now 

added to the conditions (1.1) and (1.2) : 

n,aif t”> IF = ti (i, j= 1, 2.3) (5.11 

where nJ are the components of the exterior normal to the surface r. 

Definition. We call the vector-~ncti~ u e Hr and satisfying the following 

integral identity 
Q E Hz (5.2) 
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a solution of the boundary value problem (1. l), (1.2) and (1.6). 

Note. 1’. If the vector of solid displacement 

rl=%-!-oxr (5.3) 

is taken as rl, where %, o are arbitrary constant vectors, r is a radius-vector of a point, 

then since the left side of (5.2) vanishes identically, we obtain the known necessary con- 
ditions for solvability, denoting the requirement for compliance with the equilibrium 

conditions c t,ar = 0, c (tiq - tp& dI’ = 0 

“r ‘: 
2’. The metric (3.2) in the space H, only defines the half-norm since every vector 

function of the form (5.3) makes the energy integral (3.2) vanish. Hence, the question 
of the existence of a generalized solution reduces to studying the continuity conditions 

for the functional Q (3 and the factor space G = HI/D, where D is the kernel of IT1, 

i.e. a set of vector functions of the form (5.3). 
The initial problem of elasticity theory is reduced to an infinite system in [3, 6, 71, 

which is obtained if elementary solutions are substitutedsuccessively into the identity 

(4.2) in place of rl and 6~i, cW,@~, 6mk, 6n, are considered independent variations. 
It can be concluded on the basis of Theorem 3 that the system obtained in such manner 

is equivalent to the initial boundary value problem. 
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A nonstationary three-dimensional problem on the motion of an isotropic elastic 

medium in the presence of a crack along the half-plane is considered. Instant- 
aneous concentrated normal and tangential pulses act at the initial instant on 

both edges of the half-plane. The solution for the time-periodic problem is de- 
termined by the Wiener-Hopf method, which was applied in the theory of wing 

vibrations [l] although the process of solving (and formulating) the problem in 
[l] differs from the course of the solution in this paper. Fur~ermore, an inverse 
time transformation is carried out which permits finding the solution of the non- 
stationary problem in the whole space at once, in the Smirnov-Sobolev form. 

The problems of unsteady motion of an elastic continuous medium have been 

considered in [Z- 51. The solution of a number of mixed dynamic problems for 

a liquid or elastic medium is given in [I, 3, 6, 71. 

1, The equations of motion in displacements for an isotropic medium in the absence 
of body forces in the three-dimensional case are 

asv/ats = (us - bs) VB + b*Vsv, 8 = vv, v = {q, v,, us} (1.1) 

Let us initially consider the following time-periodic singular boundary value problem 

for a ~rni-~f~i~ slit (2 = 0, - 00 ( (oo > I 

Q zz = 8 [(a2 - 2b2)f) + 2bzg] = F%(x+ q)&(y + yo)exp(- iot) (1.2) 

?!<9, 0s == 9 7 Y>O 

cxz-pbz(J?$-+$) =Qs(3:+~~)6(y~~~)exp(-_iot) 

M<Z/.<OO 

5Uz=pbS($+$) =V&(2+~~),)6(y+y,)exp(-_s’wt) 

m<?/<@) 

vi, 2, s = 0 (R?), R1 = dg* + za -+ 0 (condition on the edge) 

Here X0, y. are Positive constants, 8 (z) is a delta function, p is the density of the 


